
Bridge to NewThingia
Herb Sutter

12/2/2020

1

Herb Sutter

4

In scope
Strategy differentiators

What did SuccessfulThing
design for so that it succeeded

when X, Y, and Z didn’t?

1. value

2. availability

3. compatibility

Table stakes:
• funding
• team
• quality
• rollout
• marketing
• …

Out of scope
“Necessary but not sufficient”

1

4

Bridge to NewThingia
Herb Sutter

12/2/2020

2

5

1. value

2. availability

3. compatibility

6

Can be a competing new product

Examples: D, Go, Swift, Rust

Can be “vNext” of the same-brand product

Same thing: For an established product,

vNext’s biggest initial competitor is vPrev

Examples: C99, C++20, VB .NET, Python 3

“Same brand/name” doesn’t mean users will

accept as same and upgrade → compatibility

5

6

Bridge to NewThingia
Herb Sutter

12/2/2020

3

8

Distinct articulable new value…

Clear and explainable in a 30-sec
elevator pitch.

Adapted from imgs.xkcd.com/comics/freedom.png

7

8

Bridge to NewThingia
Herb Sutter

12/2/2020

4

9

Distinct articulable new value…

Clear and explainable in a 30-sec
elevator pitch.

… that solves known pain points.

Connection: To OldThing.

Orientation: “We aim to take you
from here across this gap.”

10

Concise elevator pitch:

Well-known pain points with JavaScript

9

10

Bridge to NewThingia
Herb Sutter

12/2/2020

5

11

Concise elevator pitch:

Well-known pain points with C++

11

12

Bridge to NewThingia
Herb Sutter

12/2/2020

6

14

Requirement: Availability essentially anywhere OldThing

is already used + easy to add to my project.

Grail: “Any OldThing project in any environment/platform

can easily add NewThing.”

13

14

Bridge to NewThingia
Herb Sutter

12/2/2020

7

15

C: Designed to work on a wide range of hardware – “they said
[portable performance] couldn’t be done, and he did it.”

Cfront: First C++ compiler compiled to C, usable “anywhere C is”
– including the C optimizer (perf) and system linker (compat).

CPython: Reference compiler written in C, usable “anywhere C is.”

TypeScript: Every TypeScript program compiles to JavaScript, runs
on any JavaScript runtime.

Swift: Available to every Xcode developer on every platform that
Objective-C supported (and now more).

Roslyn vNext C# compiler: Available to every Visual Studio
developer on every platform Visual C# supported.

Cfront

CPython

15

16

Bridge to NewThingia
Herb Sutter

12/2/2020

8

18

A B

effort

value

effort

value?

17

18

Bridge to NewThingia
Herb Sutter

12/2/2020

9

19

Basic requirement: High fidelity interop.

Min bar: NewThing can seamlessly use OldThing.

Good: “An OldThing project can add NewThing
side by side and start seeing benefit.”

Ex: “Add NewLang file and see benefit.”

20

Basic requirement: High fidelity interop.

Min bar: NewThing can seamlessly use OldThing.

Good: “An OldThing project can add NewThing
side by side and start seeing benefit.”

Ex: “Add NewLang file and see benefit.”

Grail: “An OldThing project can add NewThing
in one place and start seeing benefit.”

Ex: “Write 1 line of NewLang and see benefit.”

1980s: Rename .c to .cpp, add 1 class, benefit.

2010s: Rename .js to .ts, add 1 class, benefit.

19

20

Bridge to NewThingia
Herb Sutter

12/2/2020

10

21

22

C++: Every C program is a C++ program (still mostly true) +
any C++ code can seamlessly call any C + C optimizer+linker.

TypeScript: Every JS program is a TS program + any TS code
can seamlessly call any JS code.

Swift: Bidirectional (Swift calls ObjC, ObjC calls Swift),
ObjC-friendly object and lifetime models (ObjC ARC +
modules designed for Swift), automatic bridging header
generation, tool support to view ObjC as if written in Swift.

Roslyn next-gen C# compiler: Strict compatibility
requirements, adhered to rigorously via compat tests.

21

22

Bridge to NewThingia
Herb Sutter

12/2/2020

11

23

Compatibility requires strategic up-front design.

Often forgotten until it is too late. Often hard to retrofit.

24

2008: Python 3

Source breaking change (can’t compile 2 as 3)

Python 2 Python 3
x = 3/2 x == 2 x == 1.5

Manual migration + tools (2to3, Pylint, Futurize,
Modernize, caniusepython3, tox, mypy)

2017: Most Python code still written in “23”

2020: 2.x frozen and unsupported

~12-year transition

vs. 8 years per major version for 1→2→3
(1994→2000→2008) Source: JetBrains Python Developers Survey (Oct 2019)

23

24

Bridge to NewThingia
Herb Sutter

12/2/2020

12

C99 (1999)

Some additions were controversial and resisted

Fun fact: CPython only allows selected C99 features
because of lack of portable compiler support

C11 (2011): Made _Complex and VLAs “conditionally supported”
 optional, not required for conformance

25

C++ is highly source & binary compatible (with C & C++prev)

Value (efficient + machine-near) + bridge (compatibility)

“Stability is a feature.” – Bjarne Stroustrup

C++11 (2008,11): Banned reference-counted std::string

ABI breaking change

GCC 5.1 (2015): First shipped a conforming std::string

Then gradually adopted platform by platform (years)

GCC 8 on Red Hat Enterprise Linux 8 (2019):
First turned the conforming string on by default

26

25

26

Bridge to NewThingia
Herb Sutter

12/2/2020

13

27

a visual to illustrate
“a decade is a long time”

28

C99 – ~12 years

Added _Complex and VLA in 1999

Walked them back to “optional” in 2011

C++11 string – ~11 years

Banned RC for std::string in 2008/2010

Major Linux distro enabled it in 2019

Python 3 – ~12 years

Shipped 3.0 in 2008

10% still using 2.x as of early 2020

If you don’t build a

strong backward

compatibility bridge,

expect to slow your

adoption down by

~10 years
(absent other forces)

27

28

Bridge to NewThingia
Herb Sutter

12/2/2020

14

29

“Every time you take
a sharp turn, some

people fall off”
– Unknown

“Sometimes the
truck falls over”

– Unknown2

30

29

30

Bridge to NewThingia
Herb Sutter

12/2/2020

15

31

Pitfall: Heavy annotation step function
“Heavy” is often a low number, e.g., ~1 per KLOC

Esp. viral annotation (aka “color”) incompatible dialect

Down: “A Red function can only call other Red functions”

Requires bottom-up annotation of the call tree

Lots of work for adopters + canonizes a Red dialect

Example: [[safe]] functions

Up: “A Red function must be called by Red-aware functions”

Requires here-up annotation of the caller path

Example: Java checked exceptions
(common result: “throws Exception” opt-out)

?

32

Many “Safe C” dialects focused on safe pointers (nullness, lifetime)

2001: Cyclone (Morrisett et al.)

2006: v1.0

No longer supported

2002: CCured (Necula et al.)

Issues: Annotations + different representations

2005 “Retrofitting”: infer annotations by whole

program analysis + extend pointer type system

2015: Checked C (Tarditi et al.)

“Distinguished by its focus on backward

compatibility, incremental conversion, …”

31

32

Bridge to NewThingia
Herb Sutter

12/2/2020

16

33

Pitfall: “Same code means different things”
 ambiguous, incompatible dialect

Poor choice 1: Allow both in the same source file

Harder to read code – need to look at context, lose locality

Harder for tools (e.g., refactoring)

Example: #pragma __new_syntax, version(2) {…} block

Poor choice 2: Don’t allow both in the same source file

Can still allow both kinds of files in same project

“Less harder” to read code and create tools

Example: Different source extensions (e.g., .lang2)

3/2

34

So, then…

33

34

Bridge to NewThingia
Herb Sutter

12/2/2020

17

1. Value to address known OldThing pain (and know OldThing’s value).

Real pain needs little explanation.

2. Availability wherever OldThing is used.

Explicit design goal from the start, but can grow into it.

3. Compatibility bridge. Seamless backward interop with OldThing.

Explicit design goal from the start. Hard to back into later.

If you don’t, expect to slow your adoption down by ~10 years.

Good: “I can use NewThing side by side in an OldThing project.”

Grail: “I can write 1 line of NewThing inside OldThing and see benefit.”

1. Value

2. Availability

3. Compatibility bridge. Seamless backward interop with OldThing.

35

36

“Why will your C++20 successor succeed when <many> haven’t?”

Here’s a differentiator that only C++next has tried … because it’s legit hard …

3. Compatibility bridge. Seamless backward interop with C++.

Explicit design goal from the start. Hard to back into later.

If you don’t, expect to slow your adoption down by ~10 years.

Good: “I can use NewLang side by side in a C++ project.”

Grail: “I can write 1 line in NewLang inside a C++ file and see benefit.”

35

36

Bridge to NewThingia
Herb Sutter

12/2/2020

18

Herb Sutter

39

